Robust clustering for functional data based on trimming and constraints
Abstract
Many clustering algorithms when the data are curves or functions have been recently proposed. However, the presence of contamination in the sample of curves can influence the performance of most of them. In this work we propose a robust, model-based clustering method that relies on an approximation to the “density function” for functional data. The robustness follows from the joint application of data-driven trimming, for reducing the effect of contaminated observations, and constraints on the variances, for avoiding spurious clusters in the solution. The algorithm is designed to perform clustering and outlier detection simultaneously by maximizing a trimmed “pseudo” likelihood. The proposed method has been evaluated and compared with other existing methods through a simulation study. Better performance for the proposed methodology is shown when a fraction of contaminating curves is added to a non-contaminated sample. Finally, an application to a real data set that has been previously considered in the literature is given.
Publisher URL: https://link.springer.com/article/10.1007/s11634-018-0312-7
DOI: 10.1007/s11634-018-0312-7
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.