5 years ago

Boosting photocatalytic water oxidation reactions over strontium tantalum oxynitride by structural laminations

Boosting photocatalytic water oxidation reactions over strontium tantalum oxynitride by structural laminations
Perovskite oxynitrides often own a poor photocatalytic activity under normal conditions, being incommensurate to their strong visible light absorbance. This is particularly true for SrTaO2N which undergoes self-oxidative decompositions even under protection of a hole scavenger. In this work, we laminate the crystal structure of SrTaO2N by inserting extra layers of SrO to form a Ruddlesden-Popper (RP) compound Sr2TaO3N. This structural modification not only improves the light absorption of SrTaO2N but also effectively suppresses the defect formation such as Ta4+ species etc. More importantly, Sr2TaO3N is able to drive photocatalytic water oxidation reactions under visible light illumination (λ ≥ 420 nm) without the aid of a cocatalyst and self-oxidative decompositions found for SrTaO2N are largely inhibited. Further analysis suggests that the presence of extra SrO layers positively shifts the valence band edge and stabilizes N species in the structure according to Pauling’s second rule. Theoretical calculations indicate that Sr2TaO3N has typical 2D charge transportation properties which are associated with the structural laminations. Its conduction band minimum (CBM) and valence band maximum (VBM) are found to be located within TaN2O2 square planes which favors efficient charge transportations.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337318300961

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.