5 years ago

Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization

Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization
Metal-organic frameworks (MOFs) have revolutionized the potential applications of nanoporous materials. One of the most recent and promising applications of these materials is their use as supports for enzyme immobilization. In this context, the in-situ (one-step) methodologies, which do not require the use of MOFs with pores larger than the enzyme to be immobilized, seem to be particularly encouraging. This work presents a systematic study of the semi-crystalline Fe-BTC MOF material (commercialized as Basolite F300) employed as support of the enzymes laccase and lipase through either in-situ or post-synthesis methodology. The presence of the enzyme in the resultant solid biocatalysts was proved by CHNS chemical analysis, thermogravimetric analysis, Bradford assays and by SDS-PAGE electrophoresis. The enzymatic activity of the resultant Fe-BTC-based biocatalysts was also tested. The in-situ approach is particularly relevant due to various reasons: (i) the enzyme immobilization is given in one step; (ii) it is rapid (10min); (iii) it is very efficient in terms of encapsulation capacity (≥98% for laccase and ≥87% for lipase); (iv) the enzymes are fully retained and no leaching is observed after an initial release of only around 10% of the enzyme molecules weakly immobilized; and (v) the activity of the retained enzyme can be substantially maintained (97% with respect to the free enzyme in the case of lipase). Any of these parameters systematically improves these given by the post-synthesis (two-step) approach. Moreover, Fe-BTC widely surpasses the benefits given by other MOF-based supports either by in-situ or post-synthesis approaches.

Publisher URL: www.sciencedirect.com/science

DOI: S0920586117307198

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.