4 years ago

Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles

Understanding How Acoustic Vibrations Modulate the Optical Response of Plasmonic Metal Nanoparticles
Jeffrey R. Guest, Aftab Ahmed, Matthew Pelton
Measurements of acoustic vibrations in nanoparticles provide an opportunity to study mechanical phenomena at nanometer length scales and picosecond time scales. Vibrations in noble-metal nanoparticles have attracted particular attention because they couple to plasmon resonances in the nanoparticles, leading to strong modulation of optical absorption and scattering. There are three mechanisms that transduce the mechanical oscillations into changes in the plasmon resonance: (1) changes in the nanoparticle geometry, (2) changes in electron density due to changes in the nanoparticle volume, and (3) changes in the interband transition energies due to compression/expansion of the nanoparticle (deformation potential). These mechanisms have been studied in the past to explain the origin of the experimental signals; however, a thorough quantitative connection between the coupling of phonon and plasmon modes has not yet been made, and the separate contribution of each coupling mechanism has not yet been quantified. Here, we present a numerical method to quantitatively determine the coupling between vibrational and plasmon modes in noble-metal nanoparticles of arbitrary geometries and apply it to silver and gold spheres, shells, rods, and cubes in the context of time-resolved measurements. We separately determine the parts of the optical response that are due to shape changes, changes in electron density, and changes in deformation potential. We further show that coupling is, in general, strongest when the regions of largest electric field (plasmon mode) and largest displacement (phonon mode) overlap. These results clarify reported experimental results and should help guide future experiments and potential applications.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04789

DOI: 10.1021/acsnano.7b04789

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.