4 years ago

Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites

Photoluminescence from Radiative Surface States and Excitons in Methylammonium Lead Bromide Perovskites
Eline M. Hutter, Davide Bartesaghi, Tom J. Savenije, Jinsong Huang, Haotong Wei, Dengyang Guo
In view of its band gap of 2.2 eV and its stability, methylammonium lead bromide (MAPbBr3) is a possible candidate to serve as a light absorber in a subcell of a multijunction solar cell. Using complementary temperature-dependent time-resolved microwave conductance (TRMC) and photoluminescence (TRPL) measurements, we demonstrate that the exciton yield increases with lower temperature at the expense of the charge carrier generation yield. The low-energy emission at around 580 nm in the cubic phase and the second broad emission peak at 622 nm in the orthorhombic phase originate from radiative recombination of charges trapped in defects with mobile countercharges. We present a kinetic model describing both the decay in conductance as well as the slow ingrowth of the TRPL. Knowledge of defect states at the surface of various crystal phases is of interest to reach higher open-circuit voltages in MAPbBr3-based cells.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01642

DOI: 10.1021/acs.jpclett.7b01642

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.