5 years ago

In-depth phylodynamics, evolutionary analysis and in silico predictions of universal epitopes of Influenza A subtypes and Influenza B viruses

In-depth phylodynamics, evolutionary analysis and in silico predictions of universal epitopes of Influenza A subtypes and Influenza B viruses
This study applied High-Performance Computing to explore the high-resolution phylodynamics and the evolutionary dynamics of Influenza viruses (IVs) A and B and their subtypes in-depth to identify peptide-based candidates for broad-spectrum vaccine targets. For this purpose, we collected all the available Hemagglutinin (HA) and Neuraminidase (NA) nucleotide and amino acid sequences (more than 100,000) of IVs isolated from all the reservoirs and intermediate hosts species, from all geographic ranges and from different isolation sources, covering a period of almost one century of sampling years. We highlight that despite the constant changes in Influenza evolutionary dynamics over time, which are responsible for the generation of novel strains, our study identified the presence of highly conserved peptides distributed in all the HA and NA found in H1-H18 and N1-N11 IAV subtypes and IBVs. Additionally, predictions through computational methods showed that these peptides could have a strong affinity to bind to HLA-A∗02:01/HLA-DRB1∗01:01 major histocompatibility complex (MHC) class I and II molecules, therefore acting as a double ligand. Moreover, epitope prediction in antigens from pathogens responsible for secondary bacterial infection was also studied. These findings show that the regions mapped here may potentially be explored as universal epitope-based candidates to develop therapies leading to a broader response against the infection induced by all circulating IAVs, IBVs and Influenza-associated bacterial infections.

Publisher URL: www.sciencedirect.com/science

DOI: S1055790317306073

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.