5 years ago

State estimation for delayed neural networks with stochastic communication protocol: The finite-time case

This paper is concerned with the finite-time state estimation problem for a class of delayed artificial neural networks under the stochastic communication protocol. The underlying time delay is time-varying yet bounded. Compared with the common-used sigmoid-type nonlinearity, a more general type of nonlinearity is adopted to describe the neuron activation function and the nonlinearity of the measurement output, respectively. In order to avoid the communication collision, the stochastic communication protocol is introduced between the transmitter and the receiver, and the corresponding scheme is characterised with the help of a Markov chain. By introducing an auxiliary vector, a novel state estimator structure is proposed. The stochastic finite-time stability of the error dynamics is first analyzed via the stochastic analysis techniques and the Lyapunov stability theory, and then the sufficient condition for the existence of the desired state estimator is obtained. Subsequently, the estimator gain is parameterized by using a set of easy-to-check computational condition. Finally, a numerical example is provided to show the effectiveness of the proposed algorithm.

Publisher URL: www.sciencedirect.com/science

DOI: S092523121731826X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.