3 years ago

Plasma Insulin Estimation in People with Type 1 Diabetes Mellitus

Plasma Insulin Estimation in People with Type 1 Diabetes Mellitus
Mert Sevil, Eda Cengiz, Jianyuan Feng, Kamuran Turksoy, Iman Hajizadeh, Nicole Frantz, Mudassir Rashid, Ali Cinar, Sediqeh Samadi
In this work the real-time estimation of plasma insulin concentration (PIC) to quantify the insulin in the bloodstream in patients with type 1 diabetes mellitus (T1DM) is presented. To this end, Hovorka’s model, a glucose–insulin dynamics model, is incorporated with various estimation techniques, including continuous-discrete extended Kalman filtering, unscented Kalman filtering, and moving horizon estimation, to provide an estimate of PIC. Furthermore, due to the considerable variability in the temporal dynamics of patients, some uncertain model parameters that have significant effects on PIC estimates are considered as additional states in Hovorka’s model to be simultaneously estimated. Latent variable regression models are developed to individualize the PIC estimators by appropriately initializing the time-varying model parameters for improved convergence. The performance of the proposed methods is evaluated using clinical data sets from subjects with T1DM, and the results demonstrate the accurate estimation of PIC.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b01618

DOI: 10.1021/acs.iecr.7b01618

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.