5 years ago

Robust-stable quadratic-optimal fuzzy-PDC controllers for systems with parametric uncertainties: A PSO based approach

The present paper shows how robust stable quadratic-optimal fuzzy controllers can be designed using particle swarm optimization (PSO) algorithm, a popular metaheuristic optimization technique. This controller is designed following the Parallel distributed compensation (PDC) technique, employed for Takagi–Sugeno (TS) fuzzy model based control systems, and is termed as a mixed H 2 /LMI controller. These controllers are designed to achieve two objectives simultaneously i.e. robust stabilization of the uncertain system with parametric uncertainties in hand and also to achieve desired transient response. The robust stabilization is guaranteed when a set of linear matrix inequalities (LMIs) formulated get satisfied. The controller simultaneously achieves the desired transient performance by minimizing a quadratic finite-horizon integral performance criterion for the nominal dynamical system. The proposed PSO based mixed H 2 /LMI controller has been employed for a benchmark dynamical system and it has been demonstrated to achieve better performance than a recently proposed hybrid Taguchi genetic algorithm (HTGA) based approach, implemented for the same problem.

Publisher URL: www.sciencedirect.com/science

DOI: S0952197618300034

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.