5 years ago

Quad-RRT: A real-time GPU-based global path planner in large-scale real environments

During the last decade, sampling based methods for motion and path planning have gained more interest. Specifically, in the field of robotics, approaches based on the Rapidly-exploring Random Tree (RRT) algorithm have become the customary technique for solving the single-query motion planning problem. However, dynamic large maps still represent a challenging scenario for these methods to produce fast enough results. Taking advantage of an NVidia CUDA-enabled Graphic Processing Unit (GPU), we present quad-RRT, an extension of the bi-directional strategy to speed up the RRT when dealing with large-scale, bidimensional (2D) maps. Designed for modern GPUs, quad-RRT computes four trees instead of the two ones built by the bidirectional approaches. This modification aims balancing the direct searching ability of these methods with the parallel exploration of those parts of the map at both sides of the path joining the initial and goal poses. Experimental results demonstrate that the proposed algorithm provides a significant speedup dealing with large-scale maps densely populated by obstacles, when compared to other implementations of the RRT. Hence, the algorithm can have a high impact in the field of inspection path planning for distributed infrastructure. It is also a promising approach to allow new generation robots, designed to work in unconstrained environments, dynamically plan large-scale paths.

Publisher URL: www.sciencedirect.com/science

DOI: S0957417418300411

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.