4 years ago

Targeting of Cellular Organelles by Fluorescent Plasmid DNA Nanoparticles

Targeting of Cellular Organelles by Fluorescent Plasmid DNA Nanoparticles
Carla Cruz, João A. Queiroz, Carolina Costa, Luísa Cortes, Margarida Caldeira, Diana Costa
The development of a suitable delivery system and the targeting of intracellular organelles are both essential for the success of drug and gene therapies. The conception of fluorescent ligands, displaying targeting specificity together with low toxicity, is an emerging and reliable tool to develop innovative delivery systems. Biocompatible BSA or pDNA/ligand nanoparticles were synthesized by a coprecipitation method and were shown to display adequate sizes and morphology for delivery purposes, and positive surface charges. Additionally, these fluorescent vectors can target specific intracellular organelles. In vitro transfection mediated by BSA or pDNA based carriers can result in the accumulation of BSA in the cytosol, lysosomes, and mitochondria or the expression of the plasmid-encoded protein, respectively. Moreover, the therapeutic effect of pDNA/ligand vectors in cancer gene therapy instigates further research aiming clinical translation.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00877

DOI: 10.1021/acs.biomac.7b00877

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.