3 years ago

ZnO(101̅0) Surface Hydroxylation under Ambient Water Vapor

ZnO(101̅0) Surface Hydroxylation under Ambient Water Vapor
Chris Goodwin, Chris Arble, Sana Rani, J. Anibal Boscoboinik, John T. Newberg, Yehia Khalifa
The interaction of water vapor with a single crystal ZnO(101̅0) surface was investigated using synchrotron-based ambient pressure X-ray photoelectron spectroscopy (APXPS). Two isobaric experiments were performed at 0.3 and 0.07 Torr water vapor pressure at sample temperatures ranging from 750 to 295 K up to a maximum of 2% relative humidity (RH). Below 10–4 % RH the ZnO(101̅0) interface is covered with ∼0.25 monolayers of OH groups attributed to dissociation at nonstoichiometric defect sites. At ∼10–4 % RH there is a sharp onset in increased surface hydroxylation attributed to reaction at stoichiometric terrace sites. The surface saturates with an OH monolayer ∼0.26 nm thick and occurs in the absence of any observable molecularly bound water, suggesting the formation of a 1 × 1 dissociated monolayer structure. This is in stark contrast to ultrahigh vacuum experiments and molecular simulations that show the optimum structure is a 2 × 1 partially dissociated H2O/OH monolayer. The sharp onset to terrace site hydroxylation at ∼10–4 % RH for ZnO(101̅0) contrasts with APXPS observations for MgO(100) which show a sharp onset at 10–2 % RH. A surface thermodynamic analysis reveals that this shift to lower RH for ZnO(101̅0) compared to MgO(100) is due to a more favorable Gibbs free energy for terrace site hydroxylation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b03335

DOI: 10.1021/acs.jpcb.7b03335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.