5 years ago

Thermodynamic Insights into the Binding of Mono- and Dicationic Imidazolium Surfactant Ionic Liquids with Methylcellulose in the Diluted Regime

Thermodynamic Insights into the Binding of Mono- and Dicationic Imidazolium Surfactant Ionic Liquids with Methylcellulose in the Diluted Regime
Carmen Luisa Kloster, Marcos Antonio Pinto Martins, Francieli Isa Ziembowicz, Caroline Raquel Bender, Marcos Antonio Villetti, Thiane Deprá de Souza, Irene Teresinha Santos Garcia, Clarissa Piccinin Frizzo
Alkylimidazolium salts are an important class of ionic liquids (ILs) due to their self-assembly capacity when in solution and due to their potential applications in chemistry and materials science. Therefore, detailed knowledge of the physicochemical properties of this class of ILs and their mixtures with natural polymers is highly desired. This work describes the interactions between a homologous series of mono- (CnMIMBr) and dicationic imidazolium (Cn(MIM)2Br2) ILs with cellulose ethers in aqueous medium. The effects of the alkyl chain length (n = 10, 12, 14, and 16), type, and concentration range of ILs (below and above their cmc) on the binding to methylcellulose (MC) were evaluated. The thermodynamic parameters showed that the interactions are favored by the increase of the IL hydrocarbon chain length, and that the binding of monocationic ILs to MC is driven by entropy. The monocationic ILs bind more effectively on the methoxyl group of MC when compared to dicationic ILs, and this outcome may be rationalized by considering the structural difference between the conventional (CnMIMBr) and the bolaform (Cn(MIM)2Br2) surfactant ILs. The C16MIMBr interacts more strongly with hydroxypropylcellulose when compared to methylcellulose, indicating that the strength of the interaction also depends on the hydrophobicity of the cellulose ethers. Our findings highlight that several parameters should be taken into account when designing new complex formulations.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b03525

DOI: 10.1021/acs.jpcb.7b03525

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.