5 years ago

How does the femoral cortex depend on bone shape? A methodology for the joint analysis of surface texture and shape

How does the femoral cortex depend on bone shape? A methodology for the joint analysis of surface texture and shape
In humans, there is clear evidence of an association between hip fracture risk and femoral neck bone mineral density, and some evidence of an association between fracture risk and the shape of the proximal femur. Here, we investigate whether the femoral cortex plays a role in these associations: do particular morphologies predispose to weaker cortices? To answer this question, we used cortical bone mapping to measure the distribution of cortical mass surface density (CMSD, mg/cm2) in a cohort of 125 females. Principal component analysis of the femoral surfaces identified three modes of shape variation accounting for 65% of the population variance. We then used statistical parametric mapping (SPM) to locate regions of the cortex where CMSD depends on shape, allowing for age. Our principal findings were increased CMSD with increased gracility over much of the proximal femur; and decreased CMSD at the superior femoral neck, coupled with increased CMSD at the calcar femorale, with increasing neck-shaft angle. In obtaining these results, we studied the role of spatial normalization in SPM, identifying systematic misregistration as a major impediment to the joint analysis of CMSD and shape. Through a series of experiments on synthetic data, we evaluated a number of registration methods for spatial normalization, concluding that only those predicated on an explicit set of homologous landmarks are suitable for this kind of analysis. The emergent methodology amounts to an extension of Geometric Morphometric Image Analysis to the domain of textured surfaces, alongside a protocol for labelling homologous landmarks in clinical CT scans of the human proximal femur.

Publisher URL: www.sciencedirect.com/science

DOI: S1361841518300112

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.