5 years ago

Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging

This study was performed to validate the efficacy of three-dimensional pseudocontinuous arterial spin labeling (pCASL) compared with dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI) in distinguishing radiation-induced brain injury from glioma recurrence in patients with glioma. Methods Both 3D pCASL and DSC-PWI were performed using a 3.0 Tesla scanner in 69 patients with previously resected and irradiated glioma who displayed newly developed abnormal contrast-enhanced lesions. The included patients were classified into a radiation-induced brain injury group (n = 34) and a glioma recurrence group (n = 35) based on subsequent pathologic analysis or clinical–radiological follow-up. Lesion perfusion parameter values (CBF and nCBF on pCASL, nrCBV and nrCBF on DSC-PWI) were measured and compared between the two groups using Student’s t test. Pearson correlation analysis was performed to evaluate the correlation between pCASL (CBF and nCBF) and DSC-PWI (nrCBV and nrCBF) values in the contrast-enhanced lesions and in the perifocal edema regions. Results For the contrast-enhanced lesions, the CBF, nCBF, nrCBV, and nrCBF (29.46 ± 15.08 ml/100 g/min, 1.11 ± 0.50, 1.39 ± 1.15, and 1.30 ± 0.74) in the radiation-induced brain injury group were significantly lower than those (64.52 ± 33.92 ml/100 g/min, 2.73 ± 1.71, 3.39 ± 2.12, and 3.20 ± 1.95) in the glioma recurrence group (P < 0.001). The CBF and nCBF demonstrated strong correlation with nrCBV and nrCBF in the contrast-enhanced lesions. Conclusion Radiation-induced brain injury and glioma recurrence can be reliably distinguished using both 3D pCASL and DSC-PWI. Contrast-free 3D pCASL is a suitable alternative to DSC-PWI for long-term follow-up in glioma patients with postoperative radiotherapy.

Publisher URL: www.sciencedirect.com/science

DOI: S0167814018300264

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.