5 years ago

Proliposome tablets manufactured using a slurry-driven lipid-enriched powders: Development, characterization and stability evaluation

Proliposome tablets manufactured using a slurry-driven lipid-enriched powders: Development, characterization and stability evaluation
Proliposome powders were prepared via a slurry method using sorbitol or D-mannitol as carbohydrate carriers in 1:10 or 1:15 w/w lipid phase to carrier ratios. Soya phosphatidylcholine (SPC) and cholesterol were employed as a lipid phase and Beclometasone dipropionate (BDP) was incorporated as a model drug. Direct compaction using a Minipress was applied on the lipid-enriched powder in order to manufacture proliposome tablets. Sorbitol-based proliposome tablets in a 1:15 w/w ratio were found to be the best formulation as it exhibited excellent powder flowability with an angle of repose of 25.62 ± 1.08°, and when compacted the resultant tablets had low friability (0.20 ± 0.03%), appropriate hardness (crushing strength) (120.67 ± 12.04 N), short disintegration time (5.85 ± 0.66 min), and appropriate weight uniformity. Moreover, upon hydration into liposomes, the entrapment efficiency for sorbitol formulations in both 1:10 and 1:15 lipid to carrier ratios were significantly higher (53.82 ± 6.42% and 57.43 ± 9.12%) than D-mannitol formulations (39.90 ± 4.30% and 35.22 ± 6.50%), respectively. Extended stability testing was conducted for 18 months, at three different temperature conditions (Fridge Temperature (FT; 6 °C), Room Temperature (RT; 22 °C) and High Temperature (HT; 40 °C)) for sorbitol-based proliposome tablets (1:15 w/w ratio). Volume median diameter (VMD) and zeta potential significantly changed from 5.90 ± 0.70 µm to 14.79 ± 0.79 µm and from −3.08 ± 0.26 mV to −11.97 ± 0.26 mV respectively at month 18, when samples were stored under HT conditions. Moreover, the entrapment efficiency of BDP decreased from 57.43 ± 9.12% to 17.93 ± 5.37% following 18 months storage under HT conditions. Overall, in this study for the first time, proliposome tablets were manufactured and thoroughly characterized, and sorbitol showed to be a promising carrier.

Publisher URL: www.sciencedirect.com/science

DOI: S0378517317311936

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.