5 years ago

Synthesis and upscaling of perovskite Mn-based oxygen carrier by industrial spray drying route

Chemical looping combustion (CLC) has inherent separation of the greenhouse gas CO2 by avoiding direct contact between air and fuel. The transfer of oxygen is realised by metal oxide particles that continuously circulate between the air and fuel reactors. Promising particles are perovskite Mn-based oxygen carrier materials, which have proven their performance at lab-scale. To test these particles at an industrial scale, it is necessary to use more raw materials that are widely and cheaply available in bulk quantities. The development of these Mn-based oxygen carriers by the spray drying method was investigated in this study. Furthermore, the production method is transferred to industrial scale so that several tonnes of oxygen carriers could be produced. The characterization and the performance of these particles at lab and industrial scale is discussed. Different Mn ores and oxides were selected to study the effect of the used Mn source on the oxygen carrier performance. Particles suitable for chemical looping were made based on diverse Mn sources with different Mn oxidation states. The performance of the oxygen carrier was found to be heavily impacted by impurities in the raw materials. The best performing Mn oxide was selected for up-scaling and each step of the spray drying process was optimized at large scale. The thermal treatment of the particles at tonne scale remains a challenge, but particles with a good mechanical strength, sphericity and sufficient reactivity for methane were manufactured.

Publisher URL: www.sciencedirect.com/science

DOI: S175058361730600X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.