5 years ago

Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants

Spatial responses of antioxidative system to aluminum stress in roots of wheat (Triticum aestivum L.) plants
Aluminum (Al) toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. The root apex of plants is the major perception site of Al toxicity. In Al stressed wheat primary roots, Al accumulation and loss of plasma membrane integrity were highest in the root apex (0–5mm), and decreased along the root axis (5–25mm). To further understand these responses in wheat, spatial profiles of antioxidant responses to Al along the 0–25mm root tip of two wheat genotypes differing in Al tolerance were analyzed. Under Al stress, the lowest root elongation was in the 0–5mm root tip, and more severe inhibition was observed in Al-sensitive genotype than Al-tolerant genotype. The highest increase of Al and hydrogen peroxide (H2O2) was in the 0–5mm zone, with the most pronounced increase of malondialdehyde content and Evans blue uptake after Al exposure, especially in Al-sensitive genotype. The activities of superoxides dismutase (SOD), ascrobate peroxidase (APX), catalase (CAT) and peroxidase (POD) and levels of antioxidants (ascorbic acid, reduced glutathione, dehydroascorbate, glutathione disulfide) were significantly increased along the root tip under Al stress, with the 0–5mm region again being the most active zone. In the same zone, the activities of CAT, APX and contents of antioxidants were higher in Al-tolerant genotype while SOD and POD activities were lower. Our results indicate that Al-induced changes in H2O2 production and antioxidative system in root tip are regulated in a spatially-specific manner, suggesting that this response may play an important role in wheat adaptation to Al toxicity.

Publisher URL: www.sciencedirect.com/science

DOI: S0048969718300214

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.