4 years ago

Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction

Mechanistic insights into the liquefaction stage of enzyme-mediated biomass deconstruction
Jinguang Hu, Timo van der Zwan, Jack N. Saddler
Effective enzyme-mediated viscosity reduction, disaggregation, or “liquefaction,” is required to overcome the rheological challenges resulting from the fibrous, hygroscopic nature of lignocellulosic biomass, particularly at the high solids loadings that will be required for an economically viable process. However, the actual mechanisms involved in enzyme-mediated liquefaction, as determined by viscosity or yield stress reduction, have yet to be fully resolved. Particle fragmentation, interparticle interaction, material dilution, and water-retention capacity were compared for their ability to quantify enzyme-mediated liquefaction of model and more realistic pretreated biomass substrates. It was apparent that material dilution and particle fragmentation occurred simultaneously and that both mechanisms contributed to viscosity/yield stress reduction. However, their relative importance was dependent on the nature of the biomass substrate. Interparticle interaction and enzyme-mediated changes to these interactions was shown to have a significant effect on slurry rheology. Liquefaction was shown to result from the combined action of material dilution, particle fragmentation, and alteration of interactions at particle surfaces. However, the observed changes in water retention capacity did not correlate with yield stress reduction. The relative importance of each mechanism was significantly influenced by the nature of the biomass substrate and its physicochemical properties. An ongoing challenge is that mechanisms, such as refining, which enhance enzyme accessibility to the cellulosic component of the substrate, are detrimental to slurry rheology and will likely impede enzyme-mediated liquefaction when high substrate concentrations are used. Yield stress rheometry was used to try to better characterize the mechanisms underlying the enzymatic liquefaction of lignocellulosic biomass. It was apparent that particle fragmentation, material dilution, and changes in interparticle interactions all contribute to enzymatic liquefaction. As well as influencing slurry rheology, the nature of the lignocellulosic substrate played a major role in the mode of liquefaction observed, consequently affecting the efficacy of high-solids enzymatic deconstruction.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/bit.26381

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.