5 years ago

Identification of ground meat species using near-infrared spectroscopy and class modeling techniques – Aspects of optimization and validation using a one-class classification model

Chemometric methods permit the construction of classifiers that effectively assist in monitoring safety, quality and authenticity of meat based on the near-infrared (NIR) spectral fingerprints. Discriminant techniques are often considered in multivariate quality control. However, when the authenticity of meat products is the primary concern, they often lead to an incorrect recognition of new samples. The performances of two class modeling techniques (CMT) in order to recognize meat sample species based on their NIR spectra was compared – a one-class classifier variant of the partial least squares method (OCPLS) and the soft independent modeling of class analogy (SIMCA). Based on obtained sensitivity and specificity values, OCPLS and SIMCA can be considered as an effective CMT for the classification of complex natural samples such as studied meat samples (with a relatively large variability). Moreover, particular attention was paid to the optimization and validation of a one-class classification model.

Publisher URL: www.sciencedirect.com/science

DOI: S0309174017303467

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.