5 years ago

When can $l_p$-norm objective functions be minimized via graph cuts?.

Filip Malmberg

Techniques based on minimal graph cuts have become a standard tool for solving combinatorial optimization problems arising in image processing and computer vision applications. These techniques can be used to minimize objective functions written as the sum of a set of unary and pairwise terms, provided that the objective function is submodular. This can be interpreted as minimizing the $l_1$-norm of the vector containing all pairwise and unary terms. By raising each term to a power $p$, the same technique can also be used to minimize the $l_p$-norm of the vector. Unfortunately, the submodularity of an $l_1$-norm objective function does not guarantee the submodularity of the corresponding $l_p$-norm objective function. The contribution of this paper is to provide useful conditions under which an $l_p$-norm objective function is submodular for all $p\geq 1$, thereby identifying a large class of $l_p$-norm objective functions that can be minimized via minimal graph cuts.

Publisher URL: http://arxiv.org/abs/1802.00624

DOI: arXiv:1802.00624v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.