Isotope shift, non-linearity of King plots and the search for new particles.
We derive a mean-field relativistic formula for the isotope shift of an electronic energy level for arbitrary angular momentum; we then use it to predict the spectra of superheavy metastable neutron-rich isotopes belonging to the hypothetical island of stability. Our results may be applied to the search for superheavy atoms in astrophysical spectra using the known values of the transition frequencies for the neutron deficient isotopes produced in the laboratory. An example of a relevant astrophysical system may be the spectra of the Przybylski's star where superheavy elements up to Z=99 have been possibly identified. In addition, it has been recently suggested to use the measurements of King plot non-linearity in a search for hypothetical new light bosons. On the other hand, one can find the non-linear corrections to the King-plot arising already in the Standard Model framework. We investigate contributions to the non-linearity arising from relativistic effects in the isotope field-shift, the nuclear polarizability and many-body effects. It is found that the nuclear polarizability contribution can lead to the significant deviation of the King plot from linearity. Therefore, the measurements of the non-linearity of King plots may be applied to obtain the nuclear polarizability change between individual isotopes. We then proceed with providing a rough analytical estimate of the non-linearity arising solely from the effect of a hypothetical scalar boson. Our predictions give theoretical limitations on the sensitivity of the search for new interactions and should help to identify the most suitable atoms for corresponding experiments.
Publisher URL: http://arxiv.org/abs/1709.00600
DOI: arXiv:1709.00600v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.