5 years ago

Dual terahertz comb spectroscopy with a single free-running fibre laser.

Xin Zhao, Ryo Oe, Kazuki Nitta, Ting Li, Takeo Minamikawa, Tatsuya Mizuguchi, Takeshi Yasui, Guoqing Hu, Zheng Zheng

Dual THz comb spectroscopy has the potential to be used as universal THz spectroscopy with high spectral resolution, high spectral accuracy, and broad spectral coverage; however, the requirement for dual stabilized femtosecond lasers hampers its versatility due to the bulky size, high complexity, and high cost. We here report the first demonstration of dual THz comb spectroscopy using a single free-running fibre laser. By tuning the cavity-loss-dependent gain profile with an intracavity Lyot filter together with precise management of the cavity length and dispersion, dual-wavelength pulsed light beams with slightly detuned repetition frequencies are generated in a single laser cavity. Due to sharing of the same cavity, such pulsed light beams suffer from common-mode fluctuation of the repetition frequency, and hence the corresponding frequency difference between them is passively stable around a few hundred hertz within millihertz fluctuation. This considerably stable frequency difference enables dual THz comb spectroscopy with a single free-running fibre laser. While greatly reducing the size, complexity, and cost of the laser source by use of a single free-running fibre laser, the dual THz comb spectroscopy system maintains a spectral bandwidth and dynamic range of spectral power comparable to a system equipped with dual stabilized fibre lasers, and can be effectively applied to high-precision spectroscopy of acetonitrile gas at atmospheric pressure. The demonstrated results indicate that this system is an attractive solution for practical applications of not only THz spectroscopy but also THz-pulse-based measurements.

Publisher URL: http://arxiv.org/abs/1802.00506

DOI: arXiv:1802.00506v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.