5 years ago

Function and Evolution of Vibrato-like Frequency Modulation in Mammals

Function and Evolution of Vibrato-like Frequency Modulation in Mammals
Anna M. Taylor, David Reby, Benjamin D. Charlton

Summary

Why do distantly related mammals like sheep, giant pandas, and fur seals produce bleats that are characterized by vibrato-like fundamental frequency (F0) modulation? To answer this question, we used psychoacoustic tests and comparative analyses to investigate whether this distinctive vocal feature has evolved to improve the perception of formants, key acoustic components of animal calls that encode important information about the caller's size and identity [1]. Psychoacoustic tests on humans confirmed that vibrato-like F0 modulation improves the ability of listeners to detect differences in the formant patterns of synthetic bleat-like stimuli. Subsequent phylogenetically controlled comparative analyses revealed that vibrato-like F0 modulation has evolved independently in six mammalian orders in vocal signals with relatively high F0 and, therefore, low spectral density (i.e., less harmonic overtones). We also found that mammals modulate the vibrato in these calls over greater frequency extents when the number of harmonic overtones per formant is low, suggesting that this is a mechanism to improve formant perception in calls with low spectral density. Our findings constitute the first evidence that formant perception in non-speech sounds is improved by fundamental frequency modulation and provide a mechanism for the convergent evolution of bleat-like calls in mammals. They also indicate that selection pressures for animals to transmit important information encoded by formant frequencies (on size and identity, for example) are likely to have been a key driver in the evolution of mammal vocal diversity.

Publisher URL: http://www.cell.com/current-biology/fulltext/S0960-9822(17)30950-8

DOI: 10.1016/j.cub.2017.07.046

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.