5 years ago

Exact coherent states with hairpin-like vortex structure in channel flow.

Ashwin Shekar, Michael D. Graham

Hairpin vortices are widely studied as an important structural aspect of wall turbulence. The present work describes, for the first time, nonlinear traveling wave solutions to the Navier--Stokes equations in the channel flow geometry -- exact coherent states (ECS) -- that display hairpin-like vortex structure. This solution family comes into existence at a saddle-node bifurcation at Reynolds number Re=666. At the bifurcation, the solution has a highly symmetric quasistreamwise vortex structure similar to that reported for previously studied ECS. With increasing distance from the bifurcation, however, both the upper and lower branch solutions develop a vortical structure characteristic of hairpins: a spanwise-oriented "head" near the channel centerplane where the mean shear vanishes connected to counter-rotating quasistreamwise "legs" that extend toward the channel wall. At Re=1800, the upper branch solution has mean and Reynolds shear-stress profiles that closely resemble those of turbulent mean profiles in the same domain.

Publisher URL: http://arxiv.org/abs/1709.02484

DOI: arXiv:1709.02484v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.