5 years ago

A Single Set of Interneurons Drives Opposite Behaviors in C. elegans

A Single Set of Interneurons Drives Opposite Behaviors in C. elegans
Elissa A. Hallem, Manon L. Guillermin, Mayra A. Carrillo


Many chemosensory stimuli evoke innate behavioral responses that can be either appetitive or aversive, depending on an animal's age, prior experience, nutritional status, and environment [1–9]. However, the circuit mechanisms that enable these valence changes are poorly understood. Here, we show that Caenorhabditis elegans can alternate between attractive or aversive responses to carbon dioxide (CO2), depending on its recently experienced CO2 environment. Both responses are mediated by a single pathway of interneurons. The CO2-evoked activity of these interneurons is subject to extreme experience-dependent modulation, enabling them to drive opposite behavioral responses to CO2. Other interneurons in the circuit regulate behavioral sensitivity to CO2 independent of valence. A combinatorial code of neuropeptides acts on the circuit to regulate both valence and sensitivity. Chemosensory valence-encoding interneurons exist across phyla, and valence is typically determined by whether appetitive or aversive interneuron populations are activated. Our results reveal an alternative mechanism of valence determination in which the same interneurons contribute to both attractive and aversive responses through modulation of sensory neuron to interneuron synapses. This circuit design represents a previously unrecognized mechanism for generating rapid changes in innate chemosensory valence.

Publisher URL: http://www.cell.com/current-biology/fulltext/S0960-9822(17)30881-3

DOI: 10.1016/j.cub.2017.07.023

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.