Localization-enhanced and degraded topological-order in interacting p-wave wires.
We numerically study the effect of disorder on the stability of the many body zero mode in a Kitaev chain with local interactions. Our numerical procedure allows us to resolve the position-space and multi-particle structure of the zero modes, as well as providing estimates for the mean energy splitting between pairs of states of opposite fermion parity, over the full many-body spectrum. We find that the parameter space of a clean system can be divided into regions where interaction induced decay transitions are suppressed (Region I) and where they are not (Region II). In Region I we observe that disorder has an adverse effect on the zero mode, which extends further into the bulk and is accompanied by an increased energy splitting between pairs of states of opposite parity. Conversely Region II sees a more intricate effect of disorder, showing an enhancement of localization at the system's end accompanied by a reduction in the mean pairwise energy splitting. We discuss our results in the context of the Many-Body Localization (MBL). We show that while the mechanism that drives the MBL transition also contributes to the fock-space localization of the many-body zero modes, measures that characterize the degree of MBL do not necessarily correlate with an enhancement of the zero-mode or an improved stability of the topological region.
Publisher URL: http://arxiv.org/abs/1708.03758
DOI: arXiv:1708.03758v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.