5 years ago

Ultrafast extreme ultraviolet photoemission without space charge.

Xinlong Li, Peng Zhao, Thomas K. Allison, Michael G. White, Jin Bakalis, Matthew D. Kershis, Christopher Corder, Amanda R. Muraca

Time- and Angle-resolved photoelectron spectroscopy from surfaces can be used to record the dynamics of electrons and holes in condensed matter on ultrafast time scales. However, ultrafast photoemission experiments using extreme-ultraviolet (XUV) light have previously been limited by either space-charge effects, low photon flux, or limited tuning range. In this article, we describe space-charge-free XUV photoelectron spectroscopy experiments with up to 5 nA of average sample current using a tunable cavity-enhanced high-harmonic source operating at 88 MHz repetition rate. The source delivers $ > 10^{11}$ photons/s in isolated harmonics to the sample over a broad photon energy range from 18 to 37 eV with a spot size of $58 \times 100 \; \mu$m$^2$. From photoelectron spectroscopy data, we place conservative upper limits on the XUV pulse duration and photon energy bandwidth of 93 fs and 65 meV, respectively. The high photocurrent, lack of space charge distortions of the photoelectron spectra, and excellent isolation of individual harmonic orders allow us to observe the laser-assisted photoelectric effect with sideband amplitudes as low as $6 \times 10^{-4}$, enabling time-resolved XUV photoemission experiments in a qualitatively new regime.

Publisher URL: http://arxiv.org/abs/1801.08124

DOI: arXiv:1801.08124v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.