Spectral stability of bi-frequency solitary waves in Soler and Dirac--Klein--Gordon models.
We construct bi-frequency solitary waves of the nonlinear Dirac equation with the scalar self-interaction (the Soler model) and the Dirac--Klein--Gordon with Yukawa self-interaction. These solitary waves provide a natural implementation of qubit and qudit states in the theory of quantum computing. We show the relation of $\pm 2\omega\mathrm{i}$ eigenvalues of the linearization at a solitary wave, Bogoliubov $\mathbf{SU}(1,1)$ symmetry, and the existence of bi-frequency solitary waves. We show that the spectral stability of these waves reduces to spectral stability of usual (one-frequency) solitary waves.
Publisher URL: http://arxiv.org/abs/1711.05654
DOI: arXiv:1711.05654v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.