5 years ago

In Situ Multimodal 3D Chemical Imaging of a Hierarchically Structured Core@Shell Catalyst

In Situ Multimodal 3D Chemical Imaging of a Hierarchically Structured Core@Shell Catalyst
Wilhelm Schwieger, Stephen W. T. Price, Michael Klumpp, Thomas L. Sheppard, Federico Benzi, Sina Baier, Roland Dittmeyer, Jan-Dierk Grunwaldt
A Cu/ZnO/Al2O3@ZSM-5 core@shell catalyst active for one-step conversion of synthesis gas to dimethyl ether (DME) was imaged simultaneously and in situ using synchrotron-based micro X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and scanning transmission X-ray microscopy (STXM) computed tomography (CT) with micrometer spatial resolution. An identical sample volume was imaged stepwise, first under oxidizing and reducing atmospheres (imitating calcination and activation processes), and then under model reaction conditions for DME synthesis (H2:CO:CO2 ratio of 16:8:1, up to 250 °C). The multimodal imaging methods offered insights into the active metal structure and speciation within the catalyst, and allowed imaging of both the catalyst core and zeolite shell in a single acquisition. Dispersion of nanosized Cu species was observed in the catalyst core during reduction, with formation of a metastable Cu+ phase at the core–shell interface. Under DME reaction conditions at 1 bar, the coexistence of Cu0 in the active catalyst core together with partially oxidized Cu species was unraveled. The zeolite shell and core–shell interface remained stable under all conditions, preserving the bifunctional nature of the catalyst. These observations are inaccessible using standard bulk techniques like X-ray absorption spectroscopy (XAS) and XRD, demonstrating the potential of multimodal in situ X-ray CT for characterization of hierarchically designed materials, which stand to benefit tremendously from such 3D spatially resolved measurements.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02177

DOI: 10.1021/jacs.7b02177

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.