3 years ago

The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory

The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which—this theory—would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses—in the genetic code table—in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance—regarding the classes of ARSs—is appreciable for the CAG code, whereas for its complement—the UNN/NUN code—only a marginal significance is measurable. These two codes codify roughly for the two ARS classes, in particular, the CAG code for the class II while the UNN/NUN code for the class I. Furthermore, the subclasses of ARSs show a statistical significance of their distribution in the genetic code table. Nevertheless, the more sensible explanation for these observations would be the following. The observation that would link the two classes of ARSs to the CAG and UNN/NUN codes, and the statistical significance of the distribution of the subclasses of ARSs in the genetic code table, would be only a secondary effect due to the highly significant distribution of the polarity of amino acids and their biosynthetic relationships in the genetic code. That is to say, the polarity of amino acids and their biosynthetic relationships would have conditioned the evolution of ARSs so that their presence in the genetic code would have been detectable. Even if the ARSs would not have—on their own—influenced directly the evolutionary organization of the genetic code. In other words, the role that ARSs had in the origin of the genetic code would have been entirely marginal. This conclusion would be in perfect accord with the predictions of the coevolution theory. Conversely, this conclusion would be in contrast—at least partially—with the physicochemical theories of the origin of the genetic code because they would foresee an absolutely more active role of ARSs in the origin of the organization of the genetic code.

Publisher URL: www.sciencedirect.com/science

DOI: S002251931730365X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.