3 years ago

Chemically Propelled Molecules and Machines

Chemically Propelled Molecules and Machines
Krishna Kanti Dey, Ayusman Sen
Self-propelled, synthetic active matters that transduce chemical energy into mechanical motion are examples of biomimetic nonequilibrium systems. They are of great current interest, with potential applications in nanomachinery, nanoscale assembly, fluidics, and chemical/biochemical sensing. Many of the physical challenges associated with generating motility on the micro- and nanoscale have recently been overcome, leading to the first generation of autonomous motors and pumps on scales ranging from microns to nanometers. This perspective focuses on catalytically powered motile systems, outlining major advances to date in motor/pump design, propulsion mechanisms and directional control, and intermotor communications leading to collective behavior. We conclude by discussing the possible future directions, from the fundamental questions that remain to be addressed to the design principles required for useful applications.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02347

DOI: 10.1021/jacs.7b02347

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.