4 years ago

Hill equation and Hatze’s muscle activation dynamics complement each other: enhanced pharmacological and physiological interpretability of modelled activity-pCa curves

In pharmacology, particularly receptor theory, the drug dose-effect relation of bio-active substances is frequently described by a sigmoidal function formulated by A.V. Hill. In biomechanics and muscle physiology then again, H. Hatze had elaborated a mathematical model for the stimulation- and length-dependent dynamics of the calcium-induced activation of mammalian skeletal muscle. Here, we prove that muscular activity-pCa curves described by the Hill equation and the equilibrium state predicted by Hatze’s activation dynamics are equivalent. Thus, the exponent introduced by Hatze can be directly identified with its counterpart in the Hill equation, by which the former model gains further physiological interpretability. Conversely, the Hill constant can now be interpreted as a function of the fibre length, generally allowing for advanced Hill plots based on model ideas. We derive and examine the complementary relation of both model approaches, highlight the benefits of mutually viewing one approach from the perspective of the other, and address the physiology behind sigmoidal curves.

Publisher URL: www.sciencedirect.com/science

DOI: S0022519317303545

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.