5 years ago

Using the Ornstein–Uhlenbeck process to model the evolution of interacting populations

The Ornstein–Uhlenbeck (OU) process plays a major role in the analysis of the evolution of phenotypic traits along phylogenies. The standard OU process includes random perturbations and stabilizing selection and assumes that species evolve independently. However, evolving species may interact through various ecological process and also exchange genes especially in plants. This is particularly true if we want to study phenotypic evolution among diverging populations within species. In this work we present a straightforward statistical approach with analytical solutions that allows for the inclusion of adaptation and migration in a common phylogenetic framework, which can also be useful for studying local adaptation among populations within the same species. We furthermore present a detailed simulation study that clearly indicates the adverse effects of ignoring migration. Similarity between species due to migration could be misinterpreted as very strong convergent evolution without proper correction for these additional dependencies. Finally, we show that our model can be interpreted in terms of ecological interactions between species, providing a general framework for the evolution of traits between “interacting” species or populations.

Publisher URL: www.sciencedirect.com/science

DOI: S0022519317302801

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.