BÜLOW, JACOB, HEISTERBERG, METTE FLINDT, SCHJERLING, PETER, MACKEY, ABIGAIL L., ROEBER, HEIDI L., ANDERSEN, JESPER L., LAUERSEN, JEPPE BO, KJAER, MICHAEL
ABSTRACTPurposeTo investigate the effect of blocking the angiotensin II Type I receptor (AT1R) upon the response to acute heavy-resistance exercise in elderly human skeletal muscle. The hypothesis was that AT1R blocking would result in a superior myogenic response accompanied by down-regulation of transforming growth factor-beta and up-regulation of insulin-like growth factor-1 signaling.MethodsTwenty-eight healthy elderly men (+64 yr) were randomized into two groups, consuming either AT1R blocker (losartan, 100 mg·d−1) or placebo for 18 d before exercise. Participants performed one bout of heavy-unilateral-resistance exercise. Six muscle biopsies were obtained from the vastus lateralis muscles of each subject: two before exercise and four after exercise (4.5 h and 1, 4, and 7 d). Blood pressure and blood samples were collected at the same time points. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells associated with Type I and Type II fibers. Gene expression levels of Notch, connective tissue, and myogenic signaling pathways were determined by real-time reverse transcription polymerase chain reaction.ResultsChanges over time were detected for circulating creatine kinase, the number of satellite cells per Type I fiber, and most of the gene targets, with no specific effect of losartan on these. However, when compared with placebo, losartan intake resulted in a greater suppression of myostatin messenger RNA.ConclusionsIn general, there does not seem to be any effect of AT1R blocking on satellite cell number or myogenic pathways in elderly men in the days after one bout of heavy-resistance exercise. However, the greater suppression of myostatin may prove to be beneficial over a long-term intervention designed to induce hypertrophy.
Purpose
To investigate the effect of blocking the angiotensin II Type I receptor (AT1R) upon the response to acute heavy-resistance exercise in elderly human skeletal muscle. The hypothesis was that AT1R blocking would result in a superior myogenic response accompanied by down-regulation of transforming growth factor-beta and up-regulation of insulin-like growth factor-1 signaling.
Methods
Twenty-eight healthy elderly men (+64 yr) were randomized into two groups, consuming either AT1R blocker (losartan, 100 mg·d−1) or placebo for 18 d before exercise. Participants performed one bout of heavy-unilateral-resistance exercise. Six muscle biopsies were obtained from the vastus lateralis muscles of each subject: two before exercise and four after exercise (4.5 h and 1, 4, and 7 d). Blood pressure and blood samples were collected at the same time points. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells associated with Type I and Type II fibers. Gene expression levels of Notch, connective tissue, and myogenic signaling pathways were determined by real-time reverse transcription polymerase chain reaction.
Results
Changes over time were detected for circulating creatine kinase, the number of satellite cells per Type I fiber, and most of the gene targets, with no specific effect of losartan on these. However, when compared with placebo, losartan intake resulted in a greater suppression of myostatin messenger RNA.
Conclusions
In general, there does not seem to be any effect of AT1R blocking on satellite cell number or myogenic pathways in elderly men in the days after one bout of heavy-resistance exercise. However, the greater suppression of myostatin may prove to be beneficial over a long-term intervention designed to induce hypertrophy.