5 years ago

Probing Spatiotemporal Stability of Optical Matter by Polarization Modulation

Probing Spatiotemporal Stability of Optical Matter by Polarization Modulation
Fan Nan, Zijie Yan
Light-driven self-organization of plasmonic nanoparticles via optical binding interactions offers a unique route to assemble mesoscale photonic clusters and chains. However, stability becomes an issue when more nanoparticles are added into the clusters and chains, since the theoretical optical binding strength is inhomogeneous and anisotropic in optical matter systems. Here we study the spatiotemporal stability of optical matter chains self-organized by two to eight ultrauniform gold nanospheres in a linearly polarized optical line trap. Perturbations are introduced into the nanosphere chains by periodically switching the polarization to be either parallel or perpendicular to the orientation of the chains, where the spatial and temporal variation of optical binding strength has been revealed. In addition, we found that the average oscillation amplitude and stability of the particles can be tuned by the frequency of polarization modulation. These results demonstrate a new way to study and improve the stability of optical matter and provide a promising strategy in engineering optical forces at the mesoscale.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b05128

DOI: 10.1021/acs.nanolett.7b05128

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.