5 years ago

HEMEsPred: Structure-Based Ligand-Specific Heme Binding Residues Prediction by Using Fast-Adaptive Ensemble Learning Scheme

Zhiqiang Ma, Jian Zhang, Guifu Yang, Haiting Chai, Bo Gao,
Heme is an essential biomolecule that widely exists in numerous extant organisms. Accurately identifying heme binding residues (HEMEs) is of great importance in disease progression and drug development. In this study, a novel predictor named HEMEsPred was proposed for predicting HEMEs. First, several sequence- and structure-based features, including amino acid composition, motifs, surface preferences, and secondary structure, were collected to construct feature matrices. Second, a novel fast-adaptive ensemble learning scheme was designed to overcome the serious class-imbalance problem as well as to enhance the prediction performance. Third, we further developed ligand-specific models considering that different heme ligands varied significantly in their roles, sizes, and distributions. Statistical test proved the effectiveness of ligand-specific models. Experimental results on benchmark datasets demonstrated good robustness of our proposed method. Furthermore, our method also showed good generalization capability and outperformed many state-of-art predictors on two independent testing datasets. HEMEsPred web server was available at http://www.inforstation.com/HEMEsPred/ for free academic use.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.