Representations of quadratic combinatorial optimization problems: A case study using the quadratic set covering problem.
The objective function of a quadratic combinatorial optimization problem (QCOP) can be represented by two data points, a quadratic cost matrix Q and a linear cost vector c. Different, but equivalent, representations of the pair (Q, c) for the same QCOP are well known in literature. Research papers often state that without loss of generality we assume Q is symmetric, or upper-triangular or positive semidefinite, etc. These representations however have inherently different properties. Popular general purpose 0-1 QCOP solvers such as GUROBI and CPLEX do not suggest a preferred representation of Q and c. Our experimental analysis discloses that GUROBI prefers the upper triangular representation of the matrix Q while CPLEX prefers the symmetric representation in a statistically significant manner. Equivalent representations, although preserve optimality, they could alter the corresponding lower bound values obtained by various lower bounding schemes. For the natural lower bound of a QCOP, symmetric representation produced tighter bounds, in general. Effect of equivalent representations when CPLEX and GUROBI run in a heuristic mode are also explored. Further, we review various equivalent representations of a QCOP from the literature that have theoretical basis to be viewed as strong and provide new theoretical insights for generating such equivalent representations making use of constant value property and diagonalization (linearization) of QCOP instances.
Publisher URL: http://arxiv.org/abs/1802.00897
DOI: arXiv:1802.00897v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.