Content based Weighted Consensus Summarization.
Multi-document summarization has received a great deal of attention in the past couple of decades. Several approaches have been proposed, many of which perform equally well and it is becoming in- creasingly difficult to choose one particular system over another. An ensemble of such systems that is able to leverage the strengths of each individual systems can build a better and more robust summary. Despite this, few attempts have been made in this direction. In this paper, we describe a category of ensemble systems which use consensus between the candidate systems to build a better meta-summary. We highlight two major shortcomings of such systems: the inability to take into account relative performance of individual systems and overlooking content of candidate summaries in favour of the sentence rankings. We propose an alternate method, content-based weighted consensus summarization, which address these concerns. We use pseudo-relevant summaries to estimate the performance of individual candidate systems, and then use this information to generate a better aggregate ranking. Experiments on DUC 2003 and DUC 2004 datasets show that the proposed system outperforms existing consensus-based techniques by a large margin.
Publisher URL: http://arxiv.org/abs/1802.00946
DOI: arXiv:1802.00946v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.