5 years ago

Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records.

Truyen Tran, Phuoc Nguyen, Svetha Venkatesh

Modern healthcare is ripe for disruption by AI. A game changer would be automatic understanding the latent processes from electronic medical records, which are being collected for billions of people worldwide. However, these healthcare processes are complicated by the interaction between at least three dynamic components: the illness which involves multiple diseases, the care which involves multiple treatments, and the recording practice which is biased and erroneous. Existing methods are inadequate in capturing the dynamic structure of care. We propose Resset, an end-to-end recurrent model that reads medical record and predicts future risk. The model adopts the algebraic view in that discrete medical objects are embedded into continuous vectors lying in the same space. We formulate the problem as modeling sequences of sets, a novel setting that have rarely, if not, been addressed. Within Resset, the bag of diseases recorded at each clinic visit is modeled as function of sets. The same hold for the bag of treatments. The interaction between the disease bag and the treatment bag at a visit is modeled in several, one of which as residual of diseases minus the treatments. Finally, the health trajectory, which is a sequence of visits, is modeled using a recurrent neural network. We report results on over a hundred thousand hospital visits by patients suffered from two costly chronic diseases -- diabetes and mental health. Resset shows promises in multiple predictive tasks such as readmission prediction, treatments recommendation and diseases progression.

Publisher URL: http://arxiv.org/abs/1802.00948

DOI: arXiv:1802.00948v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.