Scheduling and Checkpointing optimization algorithm for Byzantine fault tolerance in Cloud Clusters.
Among those faults Byzantine faults offers serious challenge to fault tolerance mechanism, because it often go undetected at the initial stage and it can easily propagate to other VMs before a detection is made. Consequently some of the mission critical application such as air traffic control, online baking etc still staying away from the cloud for such reasons. However if a Byzantine faults is not detected and tolerated at initial stage then applications such as big data analytics can go completely wrong in spite of hours of computations performed by the entire cloud. Therefore in the previous work a fool-proof Byzantine fault detection has been proposed, as a continuation this work designs a scheduling algorithm (WSSS) and checkpoint optimization algorithm (TCC) to tolerate and eliminate the Byzantine faults before it makes any impact. The WSSS algorithm keeps track of server performance which is part of Virtual Clusters to help allocate best performing server to mission critical application. WSSS therefore ranks the servers based on a counter which monitors every Virtual Nodes (VN) for time and performance failures. The TCC algorithm works to generalize the possible Byzantine error prone region through monitoring delay variation to start new VNs with previous checkpointing. Moreover it can stretch the state interval for performing and error free VNs in an effect to minimize the space, time and cost overheads caused by checkpointing. The analysis is performed with plotting state transition and CloudSim based simulation. The result shows TCC reduces fault tolerance overhead exponentially and the WSSS allots virtual resources effectively
Publisher URL: http://arxiv.org/abs/1802.00951
DOI: arXiv:1802.00951v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.