Adaptive Representation Selection in Contextual Bandit with Unlabeled History.
We consider an extension of the contextual bandit setting, motivated by several practical applications, where an unlabeled history of contexts can become available for pre-training before the online decision-making begins. We propose an approach for improving the performance of contextual bandit in such setting, via adaptive, dynamic representation learning, which combines offline pre-training on unlabeled history of contexts with online selection and modification of embedding functions. Our experiments on a variety of datasets and in different nonstationary environments demonstrate clear advantages of our approach over the standard contextual bandit.
Publisher URL: http://arxiv.org/abs/1802.00981
DOI: arXiv:1802.00981v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.