A Graph Theoretic Approach for Training Overhead Reduction in FDD Massive MIMO Systems.
The overheads associated with feedback-based channel acquisition can greatly compromise the achievable rates of FDD based massive MIMO systems. Indeed, downlink (DL) training and uplink (UL) feedback overheads scale linearly with the number of base station (BS) antennas, in sharp contrast to TDD-based massive MIMO, where a single UL pilot trains the whole BS array. In this work, we propose a graph-theoretic approach to reducing DL training and UL feedback overheads in FDD massive MIMO systems. In particular, we consider a single-cell scenario involving a single BS with a massive antenna array serving to single-antenna mobile stations (MSs) in the DL. We assume the BS employs two-stage beamforming in the DL, comprising DFT pre-beamforming followed by MU-MIMO precoding. The proposed graph-theoretic approach exploits knowledge of the angular spectra of the BS-MS channels to construct DL training protocols with reduced overheads. Simulation results reveal that the proposed training-resources allocation method can provide approximately 35% sum-rate performance gain compared to conventional orthogonal training. Our analysis also sheds light into the impact of overhead reduction on channel estimation quality, and, in turn, achievable rates.
Publisher URL: http://arxiv.org/abs/1802.01014
DOI: arXiv:1802.01014v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.