On Distributed Algorithms for Cost-Efficient Data Center Placement in Cloud Computing.
The increasing popularity of cloud computing has resulted in a proliferation of data centers. Effective placement of data centers improves network performance and minimizes clients' perceived latency. The problem of determining the optimal placement of data centers in a large network is a classical uncapacitated $k$-median problem. Traditional works have focused on centralized algorithms, which requires knowledge of the overall network topology and information about the customers' service demands. Moreover, centralized algorithms are computationally expensive and do not scale well with the size of the network. We propose a fully distributed algorithm with linear complexity to optimize the locations of data centers. The proposed algorithm utilizes an iterative two-step optimization approach. Specifically, in each iteration, it first partitions the whole network into $k$ regions through a distributed partitioning algorithm; then within each region, it determines the local approximate optimal location through a distributed message-passing algorithm. When the underlying network is a tree topology, we show that the overall cost is monotonically decreasing between successive iterations and the proposed algorithm converges in a finite number of iterations. Extensive simulations on both synthetic and real Internet topologies show that the proposed algorithm achieves performance comparable with that of centralized algorithms that require global information and have higher computational complexity.
Publisher URL: http://arxiv.org/abs/1802.01289
DOI: arXiv:1802.01289v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.