5 years ago

Shortest $k$-Disjoint Paths via Determinants.

Anish Mukherjee, Siddharth Iyer, Raghav Kulkarni, Samir Datta

The well-known $k$-disjoint path problem ($k$-DPP) asks for pairwise vertex-disjoint paths between $k$ specified pairs of vertices $(s_i, t_i)$ in a given graph, if they exist. The decision version of the shortest $k$-DPP asks for the length of the shortest (in terms of total length) such paths. Similarly the search and counting versions ask for one such and the number of such shortest set of paths, respectively.

We restrict attention to the shortest $k$-DPP instances on undirected planar graphs where all sources and sinks lie on a single face or on a pair of faces. We provide efficient sequential and parallel algorithms for the search versions of the problem answering one of the main open questions raised by Colin de Verdiere and Schrijver for the general one-face problem. We do so by providing a randomised $NC^2$ algorithm along with an $O(n^{\omega})$ time randomised sequential algorithm. We also obtain deterministic algorithms with similar resource bounds for the counting and search versions.

In contrast, previously, only the sequential complexity of decision and search versions of the "well-ordered" case has been studied. For the one-face case, sequential versions of our routines have better running times for constantly many terminals. In addition, the earlier best known sequential algorithms (e.g. Borradaile et al.) were randomised while ours are also deterministic.

The algorithms are based on a bijection between a shortest $k$-tuple of disjoint paths in the given graph and cycle covers in a related digraph. This allows us to non-trivially modify established techniques relating counting cycle covers to the determinant. We further need to do a controlled inclusion-exclusion to produce a polynomial sum of determinants such that all "bad" cycle covers cancel out in the sum allowing us to count "good" cycle covers.

Publisher URL: http://arxiv.org/abs/1802.01338

DOI: arXiv:1802.01338v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.