5 years ago

Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles.

Guilherme Lawless, Heinrich H. Bülthoff, Eric Price, Michael Black, Aamir Ahmad

Multi-camera full-body pose capture of humans and animals in outdoor environments is a highly challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. The key enabling-aspect of our approach is the on-board person detection and tracking method. Recent state-of-the-art methods based on deep neural networks (DNN) are highly promising in this context. However, real time DNNs are severely constrained in input data dimensions, in contrast to available camera resolutions. Therefore, DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, real-time, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs. First, each MAV fuses its own detections with those obtained by other MAVs to perform cooperative visual tracking. This allows for predicting future poses of the tracked person, which are used to selectively process only the relevant regions of future images, even at high resolutions. Consequently, using our DNN-based detector we are able to continuously track even distant humans with high accuracy and speed. We demonstrate the efficiency of our approach through real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. Our solution runs fully on-board our MAV's CPU and GPU, with no remote processing. ROS-based source code is provided for the benefit of the community.

Publisher URL: http://arxiv.org/abs/1802.01346

DOI: arXiv:1802.01346v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.