5 years ago

Boundary-based Image Forgery Detection by Fast Shallow CNN.

Zhongping Zhang, Jiebo Luo, Zheng Zhou, Yixuan Zhang

Image forgery detection is the task of detecting and localizing forged parts in tampered images. Previous works mostly focus on high resolution images using traces of resampling features, demosaicing features or sharpness of edges. However, a good detection method should also be applicable to low resolution images because compressed or resized images are common these days. To this end, we propose a Shallow Convolutional Neural Network(SCNN), capable of distinguishing the boundaries of forged regions from original edges in low resolution images. SCNN is designed to utilize the information of chroma and saturation. Based on SCNN, two approaches that are named Sliding Windows Detection (SWD) and Fast SCNN, respectively, are developed to detect and localize image forgery region. In this paper, we substantiate that Fast SCNN can detect drastic change of chroma and saturation. In image forgery detection experiments Our model is evaluated on the CASIA 2.0 dataset. The results show that Fast SCNN performs well on low resolution images and achieves significant improvements over the state-of-the-art.

Publisher URL: http://arxiv.org/abs/1801.06732

DOI: arXiv:1801.06732v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.