5 years ago

Nodal cilia-driven flow: Development of a computational model of the nodal cilia axoneme

Cilia-driven nodal flow is important in the determination of left-right asymmetry in the body. Several theoretical and computational models have been proposed to explain the mechanics of ciliary motion, although the full mechanism remains unknown. Here, we developed a three-dimensional nodal cilia axoneme model using a finite element-boundary element coupling method, and investigated the mechanics of nodal ciliary motion. We found that the rotational orbit was strongly dependent on the dynein activation frequency. We also investigated flow field generated by the ciliary rotation, and the flow strength decayed as r - 3 at the far field from the cilium. Our numerical results also suggest that experimentally observed tilt angle θ = 2 π / 9 is sufficiently large to make a leftward flow. These findings are helpful in better understanding ciliary motion and nodal flow.

Publisher URL: www.sciencedirect.com/science

DOI: S0021929017303962

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.