Solving the dark matter problem through dynamic interactions.
Owing to the renewed interest in dark matter after the upgrade of the large hadron collider and its dedication to dark matter research it is timely to reassess the whole problem. Considering dark matter is one way to reconcile the discrepancy between the velocity of matter in the outer regions of galaxies and the observed galactic mass. So far, no credible candidate for dark matter has been identified. Here, we develop a model accounting for observations by rotations and interactions between rotating objects analogous to magnetic fields and interactions with moving charges. The magnitude of these fields is described by a fundamental constant of the order 10-41kg-1. The same interactions can be observed in the solar system where they lead to small changes in planetary orbits.
Publisher URL: http://arxiv.org/abs/1506.00413
DOI: arXiv:1506.00413v4
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.