3 years ago

A novel surrogate lung material for impact studies: Development and testing procedures

This work focuses on the development of a surrogate lung material (SLM) that reproduces the dynamic response of a human lung under various loading conditions and also allows for the analysis of the extent and distribution of damage. The SLM consists of polyurethane foam used to mimic the spongy lung tissue and fluid-filled gelatine microcapsules used to simulate the damage of alveoli. The bursting pressure of the microcapsules was investigated by conducting low and high rate compression tests on single microcapsules. A bursting pressure of around 5bar was measured which is comparable to the reported lung overpressure at injury level. Low and high rate compression tests were conducted on the SLMs. From the measured mechanical properties and mass density, the stress wave speed was calculated and found to be well in the range of the reported values for human lungs (16–70m/s). In order to study the extent and distribution of damage in the SLMs, as represented by burst microcapsules, a CT scan analysis was carried out before and after the impacts. The CT scan results clearly demonstrated the magnitude and distribution of damage within the specimen. The results are then compared to the Bowen curves, the most often used criteria for predicting blast injuries in humans. An excellent agreement was found between the observed damage in the surrogate lungs and the expected damage in real human lungs. In general, the SLM showed similar stress wave speed, bursting pressure and damage to that of the real lungs.

Publisher URL: www.sciencedirect.com/science

DOI: S0021929017303949

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.